Trio prenatal diagnosis – Bibliografia

  1. Prevalence and Patterns of Presentation of Genetic Disorders in a Pediatric Emergency Department”. Jump up to:ab c d Kumar, Pankaj; Radhakrishnan, Jolly; Chowdhary, Maksud A.; Giampietro, Philip F. (2001-08-01). Mayo Clinic Proceedings. 76 (8): 777–783. 
  2. Orphanet: About rare diseases”. www.orpha.net. Retrieved 2020-01-14.
  3. Counseling pregnant people after previous termination of pregnancy for fetal anomaly (TOPFA): the double RAINBOW approach Anxiety Stress Coping 2023 Mar;36(2):259-273.
  4. EUROCAT public health indicators for congenital anomalies in Europe Birth Defects Res A Clin Mol Teratol. 2011 Mar;91 Suppl 1(Suppl 1):S16-22.
  5. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Srivastava S, Love-Nichols JA, Dies KA, Ledbetter DH, Martin CL, Chung WK, Firth HV, Frazier T, Hansen RL, Prock L, Brunner H, Hoang N, Scherer SW, Sahin M, Miller DT; NDD Exome Scoping Review Work Group. Genet Med. 2019 Nov;
  6. Case for genome sequencing in infants and children with rare, undiagnosed or genetic diseases.
  7. Bick D, Jones M, Taylor SL, Taft RJ, Belmont J. J Med Genet. 2019 Dec
  8. Diagnostic exome sequencing in persons with severe intellectual disability.de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T, Vulto-van Silfhout AT, Koolen DA, de Vries P, Gilissen C, del Rosario M, Hoischen A, Scheffer H, de Vries BB, Brunner HG, Veltman JA, Vissers LE. N Engl J Med. 2012 Nov 15;
  9. The genetic basis of disease”Jackson, Maria; Marks, Leah; May, Gerhard H.W.; Wilson, Joanna B. (2018-12-03). . Essays in Biochemistry. 62 (5): 643–723. 
  10. Exome sequencing improves genetic diagnosis of structural fetal abnomalities revealed by ultrasound Carss J1, Hillman  SC, Parthiban  V, McMullan  DJ, Maher  ER, Kilby MD, Hurles ME. Hum Mol Genet. 2014 Feb 11
  11. Exome Sequencing in Fetuses with Structural MalformationsFiona L. Mackie 1,2,*, Keren J. Carss 3, Sarah C. Hillman 1, Matthew E. Hurles 3 and Mark D. Kilb
  12. Introducing the Next Generation Prenatal Diagnosis. Mesoraca A. ; Dello Russo C., Di Giacomo G.;  Cignini P. D’Emidio L.; Mobili L.; Mangiafico L.; Giorlandino C. J PrenatMed. 2014
  13. Human genome sequencing–next generation technology or will the routine sequencing of human genome be possible?]. Cas Lek Cesk. 20098) Next generation sequencing in clinical medicine: Challenges and lessons for pathology and biomedical informatics. J PatholInform. 2012;3:40
  14. Exome sequencing generates high quality data in non-target regions.
    10) Mark J. P. Chaisson, John Huddleston, Megan Y. Dennis, Peter H. Sudmant, Maika Malig, Fereydoun Hormozdiari, Francesca Antonacci, Urvashi Surti, Richard Sandstrom, Matthew Boitano, Jane M. Landolin, John A. Stamatoyannopoulos, Michael W. Hunkapiller, Jonas Korlach, Evan E. Eichler BMC Genomics. 2012 May 20
  15. Trio exome sequencing is a useful addition to prenatal diagnostics due to its high diagnostic yield and short processing time di Heinz Gabriel, Dirk Korinth, Martin Ritthaler, Björn Schulte, Florian Battke, Constantin von Kaisenberg, Max Wüstemann, Bernt Schulze, Almuth Friedrich-Freksa Prenatal Diagnosis 27 December 2021 https://doi.org/10.1002/pd.6081
  16. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study Lord J, McMullan DJ, Eberhardt RY, et al . Lancet. 2019; 393(10173): 747-757.
  17. Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study. Petrovski S, Aggarwal V, Giordano JL, et al. Lancet. 2019; 393(10173): 758-767
  18. Trio-based whole exome sequencing in patients with suspected sporadic inborn errors of immunity: A retrospective cohort study National Institute of Health, eLife. 2022; 11: e78469. Published online 2022 Oct 17. doi: 10.7554/eLife.78469
  19. Whole exome sequencing: applications in prenatal geneticsJelin AC, Vora N. . ObstetGynecolClin North Am. 2018; 45(1): 69-81.
  20. New promising methods of prenatal diagnosticsSaner F, Büchel J, Schönberger H, et alGynaecolPract. 2015; 10(7): 1-6
  21. The current and future impact of genome-wide sequencing on fetal precision medicineSabbagh R, Van den VeyverIB. . Hum Genet. 2020; 139(9): 1121-1130
  22. The use of fetal exome sequencing in prenatal diagnosis: a points to consider document of the American College of Medical Genetics and Genomics (ACMG). Monaghan KG, Leach NT, Pekaret D, Prasad P, Rose NC. Genet Med. 2020; 22(4): 675-680.
  23. Implementation of exome sequencing in fetal diagnostics – data and experiences from tertiary center in Denmark Becher N, Andreasen L, Sandager P, et al. . Acta ObstetGynecolScand. 2020; 99(6): 783-790.
  24. Rapid whole exome sequencing in pregnancies to identify the underlying genetic cause in fetuses with congenital anomalies detected by ultrasound imaging Deden C, Nevelin K, Zafeiropopoulou D, et al.. PrenatDiagn. 2020; 40(8): 972-983.
  25. An approach to integrating exome sequencing for fetal structural anomalies into clinical practice. Vora NL, Gilmore K, Brandt A, et al.  Genet Med. 2020; 22(5): 954-961.
  26. Corte di cassazione: iii – 2 ottobre 2012 n. 16754 la suprema corte afferma la risarcibilità dei danni in favore del figlio nato con una patologia genetica, nei confronti del medico che non l’ha diagnosticata.
  27. Corte di cassazione: 3ª sezione civile n. 7385 del 16 marzo 2021 conferma la richiesta di risarcimento danni avanzata dai genitori di una bambina nata con una grave patologia cromosomica non diagnosticata dalla struttura sanitaria.
  28. Corte di Cassazione, sez. III civile, 15 novembre 2019, n. 29709. Il medico ha sempre l’obbligo di informare, in modo completo e adeguato, il paziente, sia nella fase di diagnosi che di cura. Egli, pertanto, è tenuto a palesare alla donna, in stato di gravidanza, la possibilità di sviluppare e approfondire
  29. “An online compendium of treatable genetic disorders”. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics. Bick, David; Bick, Sarah L.; Dimmock, David P.; Fowler, Tom A.; Caulfield, Mark J.; Scott, Richard H. (March 2021).  187 (1): 48–54. doi:1002/ajmg.c.31874ISSN1552-4876PMC 7986124PMID 33350578.
  30. Gene therapy clinical trials worldwide to 2012 – an update”. Ginn, Samantha L.; Alexander, Ian E.; Edelstein, Michael L.; Abedi, Mohammad R.; Wixon, Jo (February 2013). ” The Journal of Gene Medicine. 15 (2): 65–77. doi:10.1002/jgm.2698. PMID 23355455. S2CID 37123019.
  31. Randomised controlled trial of genetic amniocentesis in 4606 low-risk women. Tabor A, Philip J, Madsen M. Lancet 1986
  32. Pregnancy loss rates after midtrimester amniocentesis. Eddleman KA, Malone FD, Sullivan L, Dukes K, Berkowitz RL, Kharbutli Y, Porter TF, Luthy DA, Comstock CH, Saade GR, Klugman S, Dugoff L, Craigo SD, Timor-Tritsch IE, Carr SR, Wolfe HM, D’Alton ME.
  33. Amniocentesis and chorionic villus sampling for prenatal diagnosis. Alfirevic Z, Navaratnam K, Mujezinovic F. Cochrane Database Syst Rev. 2017 Sep 4;9(9):CD003252.
  34. Chorionic villus sampling compared with amniocentesis and the difference in the rate of pregnancy loss Aaron B Caughey 1, Linda M Hopkins, Mary E Norton Obstet Gynecol. 2006 Sep;108(3 Pt 1):612-6.
  35. Procedure-related complications of amniocentesis and chorionic villous sampling: a systematic review. Mujezinovic F, Alfirevic Z Obstet Gynecol.2007 Sep;110(3):687-94.
  36. Antibioticprophylaxisbefore second-trimestergeneticamniocentesis (APGA): a single-centre open randomisedcontrolledtrial Claudio Giorlandino 1, Pietro Cignini, Marco Cini, Cristiana Brizzi, Ornella Carcioppolo, Vincenzo Milite, Claudio Coco, Paolo Gentili, Lucia Mangiafico, Alvaro Mesoraca, Domenico Bizzoco, Ivan Gabrielli, Luisa Mobili PrenatDiagn. 2009 Jun;29(6):606-12.
  37. Evaluating the rate and risk factors for fetal loss after chorionic villus sampling Anthony O Odibo 1, Jeffrey M Dicke, Diana L Gray, Barbara Oberle, David M Stamilio, George A Macones, James P Crane Obstet Gynecol  2008 Oct;112(4):813-9.
  38. Linee Guida sullo screening del DNA fetale non invasivo (NIPT) in sanità pubblica 2021. Consiglio Superiore di Sanità Sezione I
  39. Aicardi-Goutieres syndrome: from patients to genes and beyond C Chahwan 1, R ChahwanClin Genet. 2012 May;81(5):413-20.doi: 10.1111/j.1399-0004.2011.01825.x.Epub 2012 Jan 8.
  40. Children with genetic conditions in the United States: Prevalence estimates from the 2016-2017 National Survey of Children’s Health Jesse Lichstein, Catharine Riley, Alisha Keehn, Deborah Maiese, Deboshree Sarkar, Joan Scott.  The National Survey of Children’s Health  in : Genetic Medicine Volume 24, ISSUE 1, P170-178, January 202
  41. Estimating the burden and economic impact of pediatric genetic disease. Gonzaludo N. Belmont J.W  Gainullin V.G,  Taft R.J. Genet Med. 2019; 21;21(9):2161): 1781-1789
  42. The burden of genetic disease on inpatient care in a Children’s Hospital. McCandless S.E. Brunger J.W. Cassidy S.B.  Am J Hum Genet. 2004; 74;74(4):788): 121-127
  43. Genetics and pediatric hospital admissions, 1985 to 2017 Gjorgioski S.  Halliday J.  Riley M. Amor D.J  Delatycki M.B. Genet Med. 2020; 22: 1777-1785
  44. National Survey of Children’s Health: guide to multiply imputed data analysis. United States Census Bureau United States Department of Commerce, United States Census Bureau . Published August 21, 2020.
  45. National Survey of Children’s Health: methodology report. United States Census Bureau United States Department of Commerce, United States Census Bureau Published February 26, 2018. Date accessed: April 15, 2021
  46. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Nguengang Wakap S. Lambert D.M.  Eur J Hum Genet. 2020;:
  47. Inserm about rare disease. Orphanet website. Updated October 25, 2012.
× Whatsapp